Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nano-inclusions: a novel approach to tune the thermal conductivity of In2O3

Identifieur interne : 000862 ( Main/Repository ); précédent : 000861; suivant : 000863

Nano-inclusions: a novel approach to tune the thermal conductivity of In2O3

Auteurs : RBID : Pascal:13-0339462

Descripteurs français

English descriptors

Abstract

Indium oxides such as In2O3 based thermoelectric ceramics exhibit a figure of merit ZT ∼0.5 above 1000 K, while optimized ZnO based thermoelectrics may reach ZT ∼0.3 at 1273 K. A way to further optimize the thermoelectric performance is to tune the thermal conductivity. In this work, a reduction of the thermal conductivity greater than 30% has been observed. Combining thermal conductivity measurements, Scanning Electron Microscopy (SEM) images, X-ray Absorption Fine-structure spectroscopy (XAFS) data and Full Multiple Scattering calculations, we associated the phenomenon with an effective scattering of mid- and long-wavelength phonons by embedded ZnO nano-inclusions in the In2O3 matrix. The results suggest a protocol for the synthesis of new heat-designed materials for many novel applications, such as high ZT thermoelectrics, thermal crystals, heat optics devices, etc.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0339462

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nano-inclusions: a novel approach to tune the thermal conductivity of In
<sub>2</sub>
O
<sub>3</sub>
</title>
<author>
<name>WEI XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences</s1>
<s2>Beijing, 100049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONG LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratory of Structural Steel, Functional Materials and Heat Treatment Processing Technology, Beijing Institute of Aeronautical Materials</s1>
<s2>Beijing 100095</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>BO CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratory of Structural Steel, Functional Materials and Heat Treatment Processing Technology, Beijing Institute of Aeronautical Materials</s1>
<s2>Beijing 100095</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Da Bo" uniqKey="Liu D">Da-Bo Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratory of Structural Steel, Functional Materials and Heat Treatment Processing Technology, Beijing Institute of Aeronautical Materials</s1>
<s2>Beijing 100095</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Yuan Hua" uniqKey="Lin Y">Yuan-Hua Lin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University</s1>
<s2>Beijing, 100084</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Beijing, 100084</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marcelli, Augusto" uniqKey="Marcelli A">Augusto Marcelli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>INFN - Laboratori Nazionali di Frascati, Via E. Fermi 40</s1>
<s2>00044 Frascati, Rome</s2>
<s3>ITA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>00044 Frascati, Rome</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>National Synchrotron Radiation Laboratory, University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0339462</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0339462 INIST</idno>
<idno type="RBID">Pascal:13-0339462</idno>
<idno type="wicri:Area/Main/Corpus">000583</idno>
<idno type="wicri:Area/Main/Repository">000862</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1463-9076</idno>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calculation</term>
<term>Ceramic materials</term>
<term>Chemical reduction</term>
<term>Crystals</term>
<term>Device</term>
<term>Fine structure</term>
<term>Heat</term>
<term>Inclusion</term>
<term>Indium oxide</term>
<term>Multiple scattering</term>
<term>Scanning electron microscopy</term>
<term>Synthesis</term>
<term>Thermal conductivity</term>
<term>Wavelength</term>
<term>X ray absorption</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Inclusion</term>
<term>Conductivité thermique</term>
<term>Oxyde d'indium</term>
<term>Céramique</term>
<term>Réduction chimique</term>
<term>Microscopie électronique balayage</term>
<term>Absorption RX</term>
<term>Structure fine</term>
<term>Diffusion multiple</term>
<term>Calcul</term>
<term>Longueur onde</term>
<term>Synthèse</term>
<term>Chaleur</term>
<term>Cristal</term>
<term>Dispositif</term>
<term>ZnO</term>
<term>O Zn</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Céramique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium oxides such as In
<sub>2</sub>
O
<sub>3</sub>
based thermoelectric ceramics exhibit a figure of merit ZT ∼0.5 above 1000 K, while optimized ZnO based thermoelectrics may reach ZT ∼0.3 at 1273 K. A way to further optimize the thermoelectric performance is to tune the thermal conductivity. In this work, a reduction of the thermal conductivity greater than 30% has been observed. Combining thermal conductivity measurements, Scanning Electron Microscopy (SEM) images, X-ray Absorption Fine-structure spectroscopy (XAFS) data and Full Multiple Scattering calculations, we associated the phenomenon with an effective scattering of mid- and long-wavelength phonons by embedded ZnO nano-inclusions in the In
<sub>2</sub>
O
<sub>3</sub>
matrix. The results suggest a protocol for the synthesis of new heat-designed materials for many novel applications, such as high ZT thermoelectrics, thermal crystals, heat optics devices, etc.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1463-9076</s0>
</fA01>
<fA03 i2="1">
<s0>PCCP, Phys. chem. chem. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>40</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nano-inclusions: a novel approach to tune the thermal conductivity of In
<sub>2</sub>
O
<sub>3</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WEI XU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YONG LIU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BO CHEN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIU (Da-Bo)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIN (Yuan-Hua)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MARCELLI (Augusto)</s1>
</fA11>
<fA14 i1="01">
<s1>Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences</s1>
<s2>Beijing, 100049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratory of Structural Steel, Functional Materials and Heat Treatment Processing Technology, Beijing Institute of Aeronautical Materials</s1>
<s2>Beijing 100095</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University</s1>
<s2>Beijing, 100084</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>INFN - Laboratori Nazionali di Frascati, Via E. Fermi 40</s1>
<s2>00044 Frascati, Rome</s2>
<s3>ITA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>National Synchrotron Radiation Laboratory, University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>17595-17600</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26801</s2>
<s5>354000504201410650</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0339462</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>PCCP. Physical chemistry chemical physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium oxides such as In
<sub>2</sub>
O
<sub>3</sub>
based thermoelectric ceramics exhibit a figure of merit ZT ∼0.5 above 1000 K, while optimized ZnO based thermoelectrics may reach ZT ∼0.3 at 1273 K. A way to further optimize the thermoelectric performance is to tune the thermal conductivity. In this work, a reduction of the thermal conductivity greater than 30% has been observed. Combining thermal conductivity measurements, Scanning Electron Microscopy (SEM) images, X-ray Absorption Fine-structure spectroscopy (XAFS) data and Full Multiple Scattering calculations, we associated the phenomenon with an effective scattering of mid- and long-wavelength phonons by embedded ZnO nano-inclusions in the In
<sub>2</sub>
O
<sub>3</sub>
matrix. The results suggest a protocol for the synthesis of new heat-designed materials for many novel applications, such as high ZT thermoelectrics, thermal crystals, heat optics devices, etc.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Inclusion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Inclusion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Inclusión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Conductivité thermique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thermal conductivity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Conductividad térmica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Céramique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ceramic materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cerámica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réduction chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical reduction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Reducción química</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Absorption RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>X ray absorption</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Absorción RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure fine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fine structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura fina</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diffusion multiple</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Multiple scattering</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Difusión múltiple</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Calcul</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Calculation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cálculo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Longueur onde</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Wavelength</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Longitud onda</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Synthèse</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Synthesis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Síntesis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Chaleur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Heat</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Calor</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cristal</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Crystals</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cristal</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Dispositif</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Device</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Dispositivo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>O Zn</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>16</s5>
</fC07>
<fN21>
<s1>322</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000862 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000862 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0339462
   |texte=   Nano-inclusions: a novel approach to tune the thermal conductivity of In2O3
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024